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ABSTRACT

In the area of office communications, Ethernet is likely to become a standard because of 1ts
flexibility, reliability and ease of use, properties also desirable with real-time applica-
tions. Unfortunately, Ethernet does not guarantee an ordered scheduling of tranmissions and
has no means for insuring functional security at overload.

We will propose some simple modificatons to the Ethernet protocol, providing for nearly
deterministic round-robin message scheduling while maintaining interconnection compatibility
with normal Ethernet interfaces.

The improvements are achieved by varying the random delays following collisions, in dependen-
cy of the individual message waiting times and the number of active nodes, which is estimated
from the number of collisions taking place. Results from computer simulations involving up

to 1000 nodes are shown.

ZUSAMMENFASSUNG

Fthernet wird wahrscheinlich ein Standard in der Biirokommunikation werden, wegen selner
Flexibilitdt, Zuverlassigkeit und einfachen Anwendung, Eigenschaften, die auch in der
ProzeBdatenverarbeitung von Vorteil waren. Leider erlaubt Ethernet Kkeinen hinreichend
geordneten Nachrichtentransport; ebenso existieren keine Vorkehrungen, um eine Minimalfunk-

tion bei Uberlast sicherzustellen.
Wir wollen hier einige Protokollmodifikationen vorstellen, die eine nahezu deterministische

Zugriffszuweisung erreichen und trotzdem die volle Kompatibilitdat 2zu normalen Ethernet-
Interfaces bewahren.

Die Verbesserungen werden erreicht durch Variation der zufalligen Verzogerungszeiten nach
Kollisionen, in Abhdngigkeit von den individuellen Nachrichten-Wartezeiten und der Anzahl der
aktiven Stationen, welche nach der Anzahl der auftretenden Kollisionen geschatzt wird. Wir
zeigen Resultate von Computersimulationen mit bis zu 1000 Stationen.

RESUME

Pour les appllcatlons de bureauthue, Ethernet est en passe de devenir un standard grace a

sa flelelllte, sa fiabilité et sa facilite d'emploi, prapeetes "egalement recherchées dans
les applications temps réel. Malheureusement, Ethernet e garantlt pas d'ordonnancement
particulier des transmissions et ne peut se camporta de facon prévisible en cas de surcharge.
On propose des modifications simples au protocole d'Ethernet assurant un ordonnancement
quasi-détermininiste des messages tout en maintenant la compatlblllte avec les interfaces
standard Ethernet. Les ameliorations sout obtennes en faisant varier les delals de deférence
en fonction des delais d'attente et du nombre de noeuds actifs, estimé d'aprés le nombre de
collisions. Des resultats de simulation pour un reseau de 1000 noeuds:sent fournis.



INTRODUCTION

Ethernet has a simple, reliable protocol with
no need for initialization (which 1is a weak
point with many other networks). The absence
of special protocol messages and complicated
procedural dependencies guarantees for high
throughput and deadlock-free operation.

In terms of office communications, Ethernet 1s
fast. In most cases, 1ts limited message
length and high data rate result 1n short
response Times.

With real-time applications, however, a secure
upper limit of response time (message delay) is
needed, especially under overload conditions.

Because it is normal with such applications
that several nodes are functionally linked by a
common process, there 1s no way to exclude
overloading especially in delicate situations.
In this case, waiting times have extremely wilde
deviation because Ethernet gives all nodes ar-
bitrary chances of getting their messages
transmitted, to the point of discriminating
messages with longer waiting Times. This may
cause delays more than ten times longer than
necessary.

TRANSPARENCY

We concentrated most of our investigations on
overload simulations (see also 'Simulation
Model'). This 'worst case' is especially worth
of consideration, because there i1s no way to
prevent it, except for extremely oversizing the
network capacity.

Overload will always cause long message queues
within the nodes; however, 1f every node can
always send its currently most important mes-
sage within a short, predictable time, this es-
sentially improves safety and simplicity,; we
call such a net 'transparent' to the upper sys-
tem layers, meaning that it guarants for a min-
imum transport ability in every situation.

It should be possible to 1insure that of n
nodes, none would have to wait for significant-
ly more than n-1 messages of others, until 1t
may transmit at least one message of 1ts own.
Our suggested improvements are especially aimed
at this goal.

We will not consider the internal message
queueing within the nodes; we assume that they
promote their most important ones. We also do
not use information that is not available at
the Link Layer, e.g. global priorities /5/.

We will not try to make any improvements of
contention time or number of collilisions;
however, the maximum throughput of the network
does not suffer from our enhancements, while
the worst-case response times at high load are
reduced at least by a factor of 10.

The improved strategy was developed from a
CSMA/CD strategy we call CSMA-B; after a few
modifications, we were also able to obtain a
result that is plug-in compatible with the
Ethernet standard /2/.
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ETHERNET

Although Ethernet 1s described thoroughly in
/9/, /10/, and especially in /2/, we will high-
light some points important to us. We will 1ig-
nore all aspects of data representation but are
interested in what we call the Ethernet
'protocol', a CSMA-scheme (Carrier Sense Multi-
ple Access) with collision detection.

Ethernet nodes, when having a message to send,
walt until they detect the channel to be idle

and then start transmitting. Because of the
signal propagation delay, some nodes might
start fTransmitting simultaneously, an event

called 'collision'. It might take twice the
delay time from one end of the cable to the
other until all of them sense this by watching
for distortions of their own transmission. In
/2/, the worst case round trip delay (including
some safety margins) is called a 'Slot'.

In case of a collision, the nodes cease trans-
mission for a random number of Slots and then
try again as soon as the channel becomes idle.
The node with the accidently smallest random
delay then gets access while all others keep
walting. Using random delays minimizes the
probabilility of repeated collisions.

Because the shortest message length with Ether-
net 1s not much longer than one Slot, several
messages of other nodes may pass during the
random delay time. With our first protocol
variations, we assumed that the nodes finish
delaying as soon as they sense a signal (but
still wait until the net becomes available) be-
cause thils faciliates gueueling control by the
nodes themselves.

With low traffic, collisions will be rare; fol-
lowing the end of a transmission, however, they
are to be expected more freguently, because
other nodes might have got ready for another
access attempt or have provided new messages
meanwhile. If lots of messages are provided,
queues will develop and several nodes will col-
lide each time the net becomes available. If
the nodes suspend delay counting as long as
they sense a signal on the net, this 'First
Collision' may be avoided /8/. As to /2/,
Ethernet does not use this method.

OPTIMUM DELAY®S

For our considerations, some rules on choosing
optimum random delay times will be of interest:

1) It is reasonable to choose delay times that
are integral multiples of one Slot (/2/,
pp.13).

?2) The time values should be equally dis-
tributed between 0 and a maximum value Dm equal
to the number of nodes involved 1n the conten-
tion /10/.

If we further try to avoid the initial colli-
sion when the channel gets availlable, by delay-
ing before the first transmission attempt, the

total contention time (i.e. all subsequent
delays and collisions until one first single
node may transmit successfully) converges to

e-0.5 (2.22..) Slots as node numbers go to in-
finity (assuming worst-case conditions about
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cable length and node positioning on it) /4/.
With First Collision, up to one more Slot 1s
wasted at high load. The contention time can
keep that short because among many nodes, there
1s probably always one which computes a short
delay time.

There are deterministic Protocols that might
need as few as 1 Slot if all nodes are involved
/7/, but error recovery, switching nodes on and
off and especially flexible addressing 1is still
a problem with this.

B E B

In order to avold excessive delay times as well
as too many collisions, Ethernet starts up with
an 1nstant transmission attempt and then uses

delay times redoubled at every collision:
Dm=21C-1, where C is the number of collisions
that a station experienced since first trying

to transmit its actual message. This strategy
is called 'Binary Exponential Backoff' (BEB).
While collisions are very likely while Dm 1is
short, the chance of resolving the conflict
rapidly increases when 1t becomes longer.
Therefore, this works with any number of nodes,
making a deadlock impossible. In /2/, this
Strategy 1is modified to 'Truncated BEB', where
Dm 1s limited to a maximum value of 1024. This
may help to avoid uselessly long delay times in
some cases, but may also increase contention
times when some hundred nodes are competing
(see-fig.1l).

ETHERNET WAITING TIMES

Because the Collision Counter of an Ethernet
node is reset after its message has been trans-
mitted, but nowhere else, and because delay
times are always completed regardless of any
events on the net, some bad effects on access
assignment take place.

At high load, nodes often finish delaying while
some message 1is being transmitted. They wait
until the net becomes 1idle and then try to

transmit. If there are more nodes or the one
just having transmitted still has another mes-
sage, a collision occurs; the node that just

had access would win this contention almost for
sure, because its C was set to O (resulting in
zero delay), while all others get their C's in-
creased, lowering their future chances.

By this mechanism, a node once having access
may send as many subsequent messages as 1t
wants, leaving almost no chance for the others
('Blocking' the net). This might be useful
when long documents are to Dbe transmitted,
splitted in many packets, but is dangerous with
real-time applications.

It also has the advantage of dramatically
lowering the contention times (but only if
every nodes really wants to send several mes-
sages) . In practice, nodes are not likely to
send more than a few messages in immediate
series, due to the slowness of their software
and their limitation in data volumes; however,
nodes newly becoming active, also have C-values
of O and might therefore alternately block up
others that have waited longer. This implies
that message waliting times may at best have a
distribution like with random queueing (fig.2);

however, especially with load patterns that are -
pgood for queueing (i.e. that inhibit Blocking),
Ethernet's contention times tend to be too long
because 1ts BEB increases the delay values too
fast.

SIMULATION MODEL

The empirical studies we have undertaken could
only be done by means of simulation. Simulation
of very large systems requires careful modeling
to keep computing times as short as possible.

We decided to use the Slot as the smallest time
raster; Ethernet's message lengths are there-
fore approximated to be from 1 to 24 Slots. Be-
cause this is nearly accurate for the shortest
message length, no finer resolution was
requilred.

The simulation routine was of course event-
driven. Message generation was allowed only
during transmission time, i.e. no new demands
arose during contention. This 1s suitable 1in
the infinite-load situation upon which we con-
centrated 1in this research, as well as with
long messages.

At high load, messages will queue up within the
nodes causing a number of them to be constantly
competing.

Because the number of nodes actually competing
is statistically dependent on the number of
connected nodes and the present system load
(lower load means that fewer of them are invol-
ved at the average), considerations about
strategy behaviour in this situation, with dif-
ferent node numbers, will also apply to limited
periods of time under medium load.

In order to avoid Blocking with the Ethernet
strategy, we also ran simulations where a total
of n nodes out of 1000 nodes were revolvingly
kept active by random message generation.

Our simulation program had a runtime of
O(nodes*messages). We ran several 1000 simula-
tions, with about 400 Million nodes*messages.

ETHERNET AT OVERLOAD

With Ethernet, overload may have diastrous con-
sequences: If it continues for some time, the
Collision Counters in the nodes approach 1o af-
ter about 4000 Slots, causing an error message
and possibly suspending the node's activities,
a catastrophic event with many real-time ap-
plications (if there is overload, a node that
accidently experienced some collisions, will
likely not get access because of 1its high
C-value but 1ncrease 1t until 16 1n 'First
Collisions').

In order to get some reasonable results for
comparison at high load, we assumed that the
Ethernet nodes' Collision Counters are simply
reset to O when approaching 16; this will then
occur frequently (see also fig.3).
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Fig.l shows the mean contention time (Slots),
Tc, and the mean number of collisions per con-
tention, Cc, for various strategies at i1nfinite
load (n nodes constantly competing). Ethernet
and the compatible Logskip strategy are shown
at short and long messages (1 resp. 24 Slots).
Because Ethernet's BEB is truncated at 1024,
contention times with Blocking explode above
200 nodes. If Blocking is prevented (see also
'Simulation Model'), contention times are al-
ways higher than necessary.

WAITING TIMES WITH RANDOM ACCESS

The term 'Delay' often used in communication
protocol analysis does not sufficiently charac-
terize the performance with real-time applica-
tions. First, it is a mean value, while here
we are interested in maxima; secondly, 1t nor-
mally includes queueing within nodes, which we
cannot consider to be part of a protocol defin-
ing the two lowest ISO-layers only. Of primary
interest to us are the waiting times of mes-
sages already offered to the net until their
transmission, especially their deviation and
expected maxima.

A simple random access scheme without any 1n-
fluences on queueing may illustrate this. Be-
cause each message has the same chance at every
contention phase, the waiting time distribution
(no. of messages transmitted above waiting
time, expressed in message lengths), is given
by the Poisson distribution:

T 60 1 T 1
b
-
Q
=>
Ll 40 .........................................................................................................................
uﬁmﬁ A
D 1 TV‘TJJ P%\T"‘ﬁﬁhlL .!t.éﬁ_n(\ o 1 A
0 40 80 120 160

m
mQO S —
r = i e N
N
Where N : number of active nodes,

m : walting time 1n avg. message-lengths,

mO: total messages processed,

r : no. of messages that were waiting for
m others.

Waiting Time [Messages]—

Fig.2: The theoretical r-curve for 20 nodes af-
ter 1000 messages, together with a simulation
resultt,

EXPECTED MAXIMUM

r gives the distribution of mO discrete events;
we could split the area under the curve 1into
areas of the content 1, each representing a
single event. We further might think of those
events 1like being placed exactly in the middle
of the areas, between two adjacent areas of the
size 1/2. With this, the area right of the
longest waiting time to be expected, mx, should
also be 1/2:

CO
1
r dm = —_—
2
mx
Leading to
mx = N In 2 mO

This 1s very close to our simulation results.
For a system with accurate round-robln queue-
ing, the corresponding formula would write
like:

Although the m e a n transmission waliting
time of a ny protocol always has to be N-1,
simple CSMA will easily produce maxima 10 times
longer. Ethernet with Blocking shows maxima
more than 100 times above the average; however,
we have to admit that few messages will wait
for longer than the duration of the longest
congestion phase occuring (during an idle in-
terval, they have a good chance of being
tranmsmitted) .



An Improved Ethernet for Real-Time Applications

STRATEGY DESCRIPTION

The most important points of the strategy
variants to be presented will be shown in
tables like the following:

S T RATEGY : ETHER

Collis./Involved : C:=C+1l, Dm:= min(2C-1,1024)
Actives : -

Success/Winner : C::O, Dm:=0
Losers P

I'his describes the Ethernet strategy by the ac-
tion taken on strategy variables (C, the colli-
sion counter, and Dm, the maximum delay time)
at certalin events: We distinguish between Col-
lision and Success (one node gets access).

At Collision, there are 1Involved (colliding)
and Active nodes (having messages pending, but
delaying) .

At Success, the Winner node transmits, while
the Losers keep waiting.

Nodes having no message pending (Passives) are
not subject to any of the strategy variants.
The strategy formulas are ordinary assignments,
and the leftmost expression 1is to be computed
first.

A  random delay D between O and Dm is computed
with all strategies; this is therefore not
mentioned.

We can now easily identify the BEB at the Col-
lis./Involved 1line, where C is incremented and
exponentiated.

With Ethernet, C and Dm are reset at Success
and not changed at Losing. This is exactly the
place for improvements.

INITIAL MODIFICATIONS

The most natural way to avoid exessive waiting
times for network access is, to establish some
mechanisms of round-robin access assignment
among the competing nodes. Because Ethernet
nodes will only react on their own collisions,
some changes are required before we can think
of introducing any form of distributed queueing
control; the following strategy we used as a
base for improvements:

S TRATEUGY : CSMA-B
Collis./Involved : C:= C+1l, Dm:= o1

Actives C:= C+1, Dm:= £lc-1
Success/Winner C:= 0, Dm:= O
Losers C:= 0O, Dm:= O

Here, all active nodes sense every collision
and all successful transmissions. They may
sense collisions they are not involved in, be-
cause the resulting Collision Fragments are al-
ways shorter than valid messages (/2/,pp.14).
All delays are ended and all collision counters
reset at Success. In addition all C's are in-
cremented at every collision on the net (but
only in nodes competing for access); we call
this behaviour 'Global Consensus' (GC). The
BEB starts over again at each contention phase,
which of course increases the number of overall
collisions; however, there are no overflowing
C's, and every node has at least an equal
chance at each contention phase. The overhead
resulting from contention times can be kept
sufficiently low.

QUEUEING CONTROL

Most interesting with CSMA-B 1is, that the
average number of collisions during one conten-
tion phase, Cc, is logarithmically dependent on
the number of competing nodes, with a standard
deviation of about 1 (fig.l), /4/:

Cc = log2(Na) (binary logarithm)

Therefore, we can estimate Na from Cc and use
this Knowledge 1n order to vary the maximum
delay times Dm of the nodes, giving them dif-
ferent chances for access according to their
different waiting times.

At 1deal round-robin access assignment, each
node should wait for exactly one transmission
of all other competing ones before it claims
access 1tself; its waiting time then equals the
number of competitors minus one (itself):

Qopt = Na - 1

In order to know the right time for an access
attempt, the node neeeds to know i1ts own wait-
ing time  as well as Na.

A simple counter for successful transmissions
by others, started when an own message gets
pending, will deliver the right value for Q.

Knowing Q and, approximately, Na, is sufficient
for wvariating Dm appropriately. We want some
algorithm that tends to decrease Dm until zero
in the longest waiting node and lets it remain
higher 1in the others. If more nodes happen to
calculate short delay times Dbecause of the
variability of +the Na-estimation, this is no
matter of concern because the conflict may
easily be solved by maintaining the BEB.

We will maintain the strategy formula Dm=2C-1.

- Then, we must vary C in order to get the right

Dm—-values for queueing control. We will still
count collisions with C, so that it increases
by Cc at every contention phase; however, after
the contention, the loser nodes shall decrease
their C by a value derived from the waiting
time Q.  Because now C does more than simply
counting collisions, we will re-christen it
'Collision Weilght'.

Idealizing, we can define a minimal condition
that C should have the value O in the longest
walting node and the value 1 1in the second
longest waiting one following to a contention.

This would cause the C of the former second
longest waiting node to increase to Cc+l
(averagely) at the next contention. The long-
est waiting node we assume to transmit; its C
rises to Cec. Our new longest-waiting node
should get 1its C down to zero by subtracting
some function of Q:

Cc+1 - f(Q) = 0O
With
Cc = log2(Na)
we get
f(Q) = 1log2(Na) + 1
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We assume round-robin queueing

R = Na -1
and get
f(Q) = log2(Q+1) + 1

INTEGER LOGARITHM

With regard to simple implementation, we did
not consider the use of floating-point
logarithms. Instead, we use an integer
logarithm that can simply be derived from a
priority encoder:

£(Q) = 1d'(Q)
where
ld'(0)=0, 14'(1)=1, 14'(2,3)=2, 1d4'(4,5,6,7)=3
etc..

Simulations showed that more 'accurate' im-
plementations of f(Q) would produce no better
results.

We may summarize: The Collision Weight is in-
cremented at every collision (as was), but then
decreased by 1d'(Q) after the contention. We
will see that this simple approach really
works.

THE WINNER NODE

We still need an appropriate strategy for the
Winner node. We know, that the shortest con-
tention times may be expected when Dm=Na.
Therefore,
with
Dm := 2tC -1

we get

C = log2(Dm+l) = log2(Na)

Because we said that in the winner node, C
should have approached

C = Cc = log2(Na),

it should already have the most reasonable
value; however, this worked out poorly with low
node numbers. We therefore prefered to set C
explicitly:

Assuming
@ = Na
we may define:
C := 14'(Q)

This 1leads to lower contention times with few
nodes; however, one may doubt if the additional
effort 1is worthwhile, because few nodes simply
can't produce high load for long, due to the
slownegss of their software.

LOGLOG
The strategy is now complete:

STRATEGY : Loglog

Collis./Involved ¢ C:= C+l, Dm:
Actives Cy= . C+l, Dmp=

Success/Winner : C:= 14'(Q), Dm:= 0, Q:= O
Losers Q:= Q+1, Dm:=0, C:= C-14'(Q@)

o
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— —
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o

The difficulties in the thecoretical analysis of
this strategy led us to the use of simulation
in order to investigate its performance and to
test the effects of changes in the formulas.
The conclusion of this investigation was that
performance was good and no changes were recom-
mendable except for some minor additions.

C-LIMITATION

A  theoretical analysis of the development of
the C-values within single nodes under equi-
librium conditions, as well as simulations,
showed it to be reasonable to limit C to a max-
imum of about 16. We also found <tThat the
C-values would react very fast if we changed
the number of active nodes; the strategies'
dynamic behaviour at load changes is excellent.

C-RANGE

An implementor should know that with Loglog,
C-values down to -8 are to be supported, al-
though they are to be interpreted as O when it
comes to calculating Dm (see fig.5)

DELAY TIMEOUT

Given the strategy formula Dm=21C-1 with a max-
imum C of 16, it becomes obvious that Dm could
theoretically become very large. Although this
could only result from an instantanecus load
decrease by violently discarding nodes or mes-
sages, 1t could socmetimes become a problem.

A simple modification will solve this: D (not
Dm !) should be limited to about 16 Slots.

If the net has been 1idle for this time, C
should be lowered or set to O (we preferred the
latter), and D should be recomputed (we call
this 'Delay Timeout'). If more nodes are still
competing, all are doing this simultaneously;
the instant access attempt (D=0 !) results in a
contention phase that serves for regaining
reascnable C-values, An arbitrary node gets
access, but the Losers then decrement their C's
according to their waiting times, preparing the
next messages to be sent in the right sequence.

Because Delay Timeouts are extremely rare,
other strategies than setting C to 0O in this
case will yield no practical advantage.

With the Ethernet strategy, Delay Timeout could
replace the present Dm-1limit of 1024.

QUEUEING PROPERTIES

Message waiting times, in ocur terms, begin when
the message is at the head of the node's output
gueue and last until transmission. We are not
concerned with the waiting times within the
node's internal queues. 'Queueing' therefore
takes place between the foremost messages or,
so to say, between the nodes. themselves.

We will show gueueing behaviour by the waiting-
time distribution: The number of messages
having waited for some other messages until
transmission, are plotted above those times,
that are denoted in (average) message-lengths.
The sample plots shown are representative.
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(see 'Compatibility'), we can save contention tention Times (dotted 1line) show some minor

time with short messages (fig.1l). spikes; this is similar to Ethernet.
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In fig.8, we have collected the information
about waiting times. The maximum message wait-
ing times Qm (in message lengths) to be expec-
ted with the different strategies are shown as
a function of the number of active nodes N
(load=1), for message lengths of 1 (short) and
24 Slots (long) and for different observation
times (total messages processed, m0O). Numerous
simulation runs were necessary to derive these
curves. The vacillation of the Loglog curves is
due to the use of 1d' (integer logarithm) in
the strategy formulas, which makes performance
somewhat dependent on the number of nodes with
respect to the next power of 2. If Blocking is
inhibited, Ethernet's maximum waiting times may
be lower.

COMPATIBILITY

During our investigations, we found that inter-
faces wusing different CSMA/CD schemes could
join the same net, provided that their
retransmigsion attempt probabilities during
contention are approximately alike. Loglog and
Ethernet nodes are not compatible; however,
little modifications of the Loglog strategy are
sufficient to achieve this. Because we also
desired to improve Loglog's throughput at short
messages (i.e. to achieve less collisions), we
tried the following change:

A node finishes delaying only if its delay time
ends naturally (still limited to 16) or if it
senses a collision. The node only consideres
itself to have been 'Losing', if its delay time
ends during the transmission by another one.
It therefore does not increment its Q@ and does
not take part in a First Collision if ite delay

time happens to 'skip' over the duration of a
short message by others. This even allows for
some 'Blocking'.

Everything else remains the same. During Con-
tention, Global Consensus is maintained. With
messages of 16 or more Slots in length, delay
ends during the transmission, but this is not
considered to be a Timeout, because the net has
not been idle;

therefore, at message lengths of 16 up, Logskip
is absolutely identical to Loglog.

2 2 2 2 T
- - 1 - 1 E

/;L- a4 If &

4 ”~ - :'T

ff 1/, 7 - g‘

/ ’ §

)

0 0 0 g =

0% 100% 0% 100% 0% 100% 0% 1005 &

Percentage of Logskip nodes ——————— g

5 10 20 40 nodes

Maximum expected message delays for the Logskip nodes
(normalized, message length ---1,—— 24 Minislots)

1—‘\’_\ 1'r¥/ 1'—' 1- '_é
A N ~ I\ <
\u———-__ \\.__ --""--.\ \"--..,_\ ‘:‘h
— e S <

~. =

v

o

0 0 0 ; 0 £
k4

r

0% 100% 0% 100% 0% 100% 0% 1007
Percentage of Logskip nodes ———————— g

5 10 20 40 nodes

Maximum expected message delays for the Ethernet nodes

(normalized, message length ---1,—— 24 Minislots)

Fig.9 contains detailed information about the
performance of mixed systems: it shows the
relative message delays to be expected with
different percentages of Logskip nodes in
Ethernet systems of 5,10,20 and 40 nodes.

The general conclusion is, that there are no
substantial disadvantages, if especially the
more demanding nodes are eguipped with Logskip.
We have found that the Ethernet nodes may get a
smaller relative share of the channel capacity
if they represent less than 1/4 of all nodes.
This 1is, however, no serious problem, because
the Ethernet nodes, as said, would already show
undesirable behaviour under extreme load situa-
tions. We have indications that throughput and
compatibility might be further improved with
some compromises in queueing behaviour;
however, queueing showed to be the most impor-
tant key to short waiting times. We therefore
decided first to concentrate on thoroughly in-
vestigating the Logskip strategy, which, in its
present form, is adequate for upgrading
exitsting netorks without problems.
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Because with short messages Q 1s not always 1in-
cremented, the nodes cause 1less collisions on
the cost of queueing.

The worst-case waiting time for access (most
important with real-time applications) remains
unchanged because it depends mostly on the be-
haviour with long messages. Even with short
messages, queuelng 1is still better than that of
Ethernet with long messages (see fig.8).

An 1mportant point 1s, that Logskip 1s 1ndeed
fairly compatible with Ethernet (fig.9). Chan-
nel utilization (given by the contention time /
message length relation) with Logskip is, all
in all, no worse than with Ethernet.

PRIORITY CONTROL

sometimes there 1s a demand for processing cer-
Taln messages faster than others. This might be
achieved by presetting the Q-values within cer-
taln node 1nterface to values other than zero
at message generation.

Care must be taken to keep all waiting time
demands within the net consistent. Some of the
Y-values therefore should begin below zero, in-
terpreted as zero in the strategy formulas.

This type of priority control 1s very interest-
ing for 1ts security, because simulations
showed that Loglog and Logskip nodes would
recover almost instantly if we were setting any
of _their strategy variables To inconsistent
values.

RESPONSE TIMES

We get the worst-case message waliting time by
taking the maximum message length of 24 Slots,
adding the contention time (fig.2) and multi-
plying this with the maximum waiting time (in
messages) from fig.8.

Given 50 microseconds Slot length and 1024
nodes, we get 40 seconds for Ethernet with
Blocking (unrealistic, because the nodes can't
generate messages fast enough), about 30
seconds for Ethernet without Blocking and 1.8
seconds for Logskip.

Because the absolute minimum (no contention
time, perfect queueing) would be about 1.3
sec., Logskip 1s already near optimum. If some
application requires time limits below this,
one would have to reduce the maximum message
length, the maximum node number, or even the
Slot time.,

CONCLUSION

We have shown a CSMA/CD strategy with control-
led queueiling behaviour, malntalning the
security advantages of a , decentralized,
probabilistic protocol.

Priority control may be achieved 1n a very
fault-tolerant way . Interfaces wusing the
proposed strategy may work together with Ether-
net 1interfaces on the same cable, allowing for
easy and fully compatible upgrading of existing
networks.
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